ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

# Smart Cities and Urban Resilience: Combining Data Science, Design Thinking, and Policy Innovation

## Dr. Pankaj Mudholkar

Associate Professor, Faculty of Computer Applications, Marwadi University, Rajkot - 360003, Gujarat, India. <a href="https://orcid.org/0000-0003-1639-0704">https://orcid.org/0000-0003-1639-0704</a> mudholkarpankaj@gmail.com

#### Dr. Megha Mudholkar

Assistant Professor, Department of Computer Engineering, Marwadi University, Rajkot - 360003, Gujarat, India. <a href="https://orcid.org/0000-0003-2016-1525">https://orcid.org/0000-0003-2016-1525</a> meghakunte2000@gmail.com

#### Dr. R. Mohana

Associate Professor, Department of English, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Perambalur – 621212, India <a href="mailto:drmohana83@gmail.com">drmohana83@gmail.com</a>

#### Dr. M. Sunitha

Professor, HOD, Department of Medical Surgical Nursing sunithamouri@gmail.com

#### Dr. K. Suresh Kumar

Professor, MBA Department, Panimalar Engineering College, Chennai, India pecmba19@gmail.com

#### To Cite this Article

Dr. Pankaj Mudholkar, Dr. Megha Mudholkar, Dr. R. Mohana, Dr. M. Sunitha, Dr. K. Suresh Kumar "Smart Cities and Urban Resilience: Combining Data Science, Design Thinking, and Policy Innovation" *Musik In Bayern, Vol. 90, Issue 9, Sep 2025, pp41-48* 

## **Article Info**

Received: 21-06-2025 Revised: 05-08-2025 Accepted: 18-08-2025 Published: 10-09-2025

#### **Abstract**

The world cities are increasingly finding their capabilities challenged by climate change, pressure on infrastructure, dense population growth and socio-economic inequalities. The novel interdisciplinary framework proposed in this paper incorporates Data Science, Design Thinking, Policy Innovation to improve the urban resilience in smart cities. Based on previous case studies in Amsterdam, Singapore and Pune, the researchers use a mixed-methods approach, which involves geospatial analysis of data, participatory design, and a model of policy scenario-based modeling, to find the key vulnerabilities in urban systems and suggest how to fix them. The machine learning tools help us to evaluate such indicators as real-time mobility in towns and cities, flood-risk mapping, and energy consumption patterns. At the same time, scenario-based policy simulations were being used to test the policy change of regulatory reform and human-centered design methods to test the prototype on adaptive solutions of infrastructure. The findings show that cities using this tritumpled system have a better preparedness of a crisis, inclusive governance, and adaption to urban shocks. The results raise the issue of combining the possibilities of computational knowledge with human innovation and flexibility of institutions to create more resilient and livable cities. The paper serves the contribution of a replicable model to the above-named professionals and specialists interested in the future-proofing of their urban landscape.

**Keywords:** Smart cities, Urban resilience, Data science, Design thinking, Policy innovation, Sustainable urbanism

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

#### I. INTRODUCTION

In the wake of the ever-growing rapid urbanization rate across the world, urban centers are vulnerable to various pressures such as infrastructural strains, environmental hazards, health hazards on the people and soc spatial imbalances. A smart city concept has become a strategic solution to these complexities as an efficient use of digital technologies in order to increase efficiency, sustainability, and the quality of life. Nevertheless, traditional smart city strategies tend to focus on the implementation of technologies rather than system resilience or adaptability of the citizenry. In this regard, resilience of urban is today an important priority in the urban planning discourse where the property of a city to anticipate, to absorb, to recover, to transform against shocks has become highly important. The threat of climate-related disaster, pandemics, and digital vulnerability have reminded the cities that they need not only to be smart but also to be agile, inclusive, and future-ready. The proposed approach in this study is an integrated triad of solutions to adopt Data Science, Design Thinking and Policy Innovation in enhancing the resilience of the cities in the smart city paradigm. Data science allows live visualisation, predictive analytics and optimisation of city systems: energy grids, bike/car-sharing, and transportation. Instead, design thinking presents human-centered approach, which promotes empathy-based, participatory problem-solving to redesign services and space in urban contexts. Policy innovation provides the institutional and regulatory infrastructure that is needed to facilitate deployment of resilient strategies and navigate emerging risks. The three domains are complementary when joined they create a potent toolkit, creating vulnerability maps of cities, as a precursor to co-developing adaptive solutions with communities, and institutionalizing sustainable governance solutions. This study investigates how cities can implement this integrative approach by relying on geographically and socioeconomically diverse cities: Amsterdam (Europe), Singapore (Asia), and Pune (India) as example of their case studies. By applying geospatial analytics, co-design workshop in community settings, and participatory modeling of scenarios, the research will explore how the relationships between digital infrastructure, social inclusivity, and the preparedness of institutions create urban resilience. The idea behind the central hypothesis is that technological innovation-driven cities, which positioned themselves to promote localism through communityfocused design and adapting the policy frameworks to citywide pressures, are more able to absorb and recover such stresses. The paper will endeavor therefore to present a replicable and scalable model of next-generation smart cities, that is, smart cities that can not only be data-driven and efficient, but also resilient, inclusive and responsive to the needs of its citizens amidst the upcoming challenges in cities.

#### II. RELEATED WORKS

The combination of urban resilience and smart city development has received ever-growing interest by scholars during the last decade. Scholars have treated this field differently, coupling information analysis, socio-technical systems, and management schemes. The basis of this debate lies in the current redefinition of the concept of smartness in cities, as a process of direct technological uptake to the comprehensive approaches, including sustainability, equity, and flexibility [1]. Another of the first conceptual connections between smart infrastructure and resilience was suggested by Hollands [2], who criticised the technocratic favoured research of earlier smart cities literature. He insisted on relying more on citizen-based systems that would have resilience incorporated at the institutional and the physical infrastructure level. This criticism became the basis of holistic platforms that today are integrating data science into social innovation approaches. Later on the applications of real-time informatics in urban environments gained more attention as the means of predicting and preventing the negative impact of the disruptions, including traffic jams, energy overloads, and severe weather conditions [3]. Data science practices in urban systems have proven to have high capabilities to increase the resilience of cities. In a case in point, Glaeser and Cutler [4] demonstrated to the extent that predictive analytics can be used to streamline health emergency response and disease surveillance in cities with high population density. In a similar way, Khan et al. [5] used machine learning models to examine the patterns of flooding in the capital of Indonesia, combining the rainfall records of previous years with satellite images and maps of sewerage systems to identify potential risk areas in the future. These strategies give us an insight that big data and artificial intelligence play a crucial role in establishing early warning systems and dynamic responding systems in smart cities. However, technological interest is not always a sure way to be resilient. Others like Mehmood [6], Cugurullo [7] have contended on the need of a more comprehensive framework systems that amalgamate socio-political context and technology innovation. Mehmood proposed a concept of smart-eco cities, which incorporates resilience and ecological perspective and engagement into a local community. Cugurullo criticized strivers instead, so-called robotic urbanism that focuses on automation rather than responsiveness, and is usually insensitive to vulnerable population groups in times of crisis. As one of the innovation approaches, design thinking has become an important urban planning tool. Brown and Wyatt [8] brought the concept of design thinking to the government sector in the manner in which they could create a collaborative problem-solving situation with empathy. This has been used in the urban context to co-design co-designed participatory housing, mobility and civil spaces based on the experienced reality of the people that live in the urban spaces. Manzini [9] went ahead and proposed an

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

additional concept design for social innovation, through which grass roots users participated in the process of prototyping and iterative development of social services. Such practices are popular in such cities as Copenhagen and Medellin, where locally designed components of infrastructure provided much better inclusiveness and avoided risks of social and environmental shocks. Policy structures are also a major part of resilience in urban times and institutional capacities. The 100 Resilient Cities of the Rockefeller Foundation served as a worldrecognized platform by which to evaluate and to build citywide resilience policies [10]. The program focused on inculcating integrated governance, public-private cooperation, and flexible policymaking over system-risk threats, including sea-level increase, cyberattacks, and economic shocks. The effectiveness of the climate adaptation plans was assessed in 401 cities by Araos et al. [11] revealing that the highest effect displays the introduction of the policies with the power of institutional leadership and multi-sectoral collaboration. Policy innovation can be seen as a strong point of smart cities with Singapore as an example of how it can work once aligned with technology and needs of its citizens. In the face of its Smart Nation program, Singapore has established an adaptive traffic network, aging-in-place assistance to the elderly, and a single digital identity system that is guided by recurrent policy reformations, regulated by citizen input and system effectiveness [12]. Conversely, fragmented or hierarchical planning arrangements have proved to create problems in cities to achieve long-term resilience as observed in the unsuccessful operations center of Rio de Janeiro in the floods of 2014 [13]. The second expanding aspect is the application of digital twins and city simulation models. These simulators enable the planners to test the policy alternatives in virtual settings before practising them on the real world. Batty [14] revealed the application of 3D city models in simulating the kinds of traffic, pollutions and crowds to emergency planning. This is the new ability to intertwine computational modelling and policy foresight and gain the ability to futureproof cities. Lastly, integrating across disciplines is also a key point in effective urban resilience strategy. Cities like Barcelona have embraced the application of the so-called Triple Helix model of innovation that inter-connects academia, industry, and the government, to come up with urban labs and resilience hubs [15]. Such types of platforms would support ongoing feedback loops among data scientists, designers, policy-makers, and communities to make sure that smart systems are dynamic, context- and citizen-centric. In short, the current literature base supports the need to shift the paradigm of purely smart-based technologies, and instead consider integrative paradigms combining data-driven insight with involvement, and adaptive policymaking. That is an integrated form of approach that is vital in developing urban resilience to more complex and interconnected risks.

#### III. METHODOLOGY

## 3.1 Design of the study

In this research, a multidisciplinary research design of a mixed approach will be followed; combining quantitative methodological studies through geospatial and statistical data analysis with qualitative participatory research design and policy modeling. The aim is to evaluate the role that the interconnection of data science, design thinking, and policy innovation can play in making smart cities more resilient. This methodology was designed along three phases that were interrelated (1) Data-driven vulnerability analysis, (2) Design co-creation workshops, and (3) Policy scenario simulation). All components provide insights into the technological, social, and institutional levels of Urban resilience [16].

#### 3.2 Selection of the Study Area

This process was done by choosing three international cities with the criteria of diversity in their models of government, maturity of their technologies and their exposure to risk, Amsterdam (Netherlands), Singapore (Singapore) and Pune (India). The three cities are high-income (Amsterdam), advanced-tech (Singapore) and emerging-market (Pune) typologies. Both of them have shown to make efforts in the direction of deploying smart infrastructure and formulating resilience strategies.

Table 1: Study Area Attributes and Resilience Context

| City      | Key Smart Features                         | Urban Resilience Challenge     | Governance Type         |
|-----------|--------------------------------------------|--------------------------------|-------------------------|
| Amsterdam | IoT-based traffic & flood control          | Sea-level rise, housing strain | Decentralized planning  |
| Singapore | Smart mobility, digital twin, e-governance | Aging population, urban heat   | Centralized technocracy |
| Pune      | Smart grid pilot, open data platform       | Monsoon flooding, urban sprawl | Hybrid federal-local    |

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

#### 3.3 Data Collection and Sources

Primary and secondary datasets were used across three domains:

- Geospatial Data: Urban heat islands, flood zones, traffic density, and air quality using Sentinel-2, Landsat 8, and open spatial datasets.
- Survey Data: Community resilience perception, service accessibility, and policy awareness through structured questionnaires (n=400 across three cities).
- Policy Archives: Resilience and smart city strategies, urban development regulations, and disaster response documents (2010–2024 period).

#### 3.4 Workflow of Analytics

#### A. The application of Data Science

In the analyses of geospatial datasets, QGIS, ArcGIS Pro and Google Earth Engine were used. The evolution of urban vulnerability in time was plotted using:

- The green cover and heat stress in NDVI and Land Surface Temperature (LST)
- Rainfall-runoff modeling flood risk index (FRI) and elevation
- Open GPS and traffic APIs applied to Mobility Disruption Index (MDI)

An aggregation of such indices into a composite Urban Stress Score (USS) per city zone was performed via principal component analysis (PCA) to standardize the indices [20].

## B. Thinking Design Application

There were two design sprint workshops in every city (6 8 hours, 25 30 participants) according to Double Diamond model: Discover Define Develop Deliver. Community leaders, local urban planners and technologists, and the citizens collaborated on prototyping resilience interventions (e.g., a resilient solution could be the prototyping of modular green corridors, Kiosks to provide digital alerts to floods) [21].

## C. Policy Innovation Implementation

System Dynamics Modeling (Vensim) was used to conduct a scenario-based simulation to draw the comparison of outcomes of four models of policy:

- 1. Business-as-usual
- 2. Data based planning alone
- 3. Community interventions that are solely design oriented
- 4. Tripartite integrated model

The results were gauged in terms of synthetic assessments of resilience consisting of recovery time, delay on the delivery of services and citizen satisfaction ratings, during simulated urban disasters.

**Table 2: Resilience Scenario Performance (Average of 3 Cities)** 

| Policy Scenario       | Recovery Time (days) | Service Delay (hrs) | Citizen Approval (%) |
|-----------------------|----------------------|---------------------|----------------------|
| Business-as-usual     | 19.2                 | 12.5                | 38.7                 |
| Data Science Only     | 14.6                 | 9.2                 | 53.4                 |
| Design Thinking Only  | 15.4                 | 10.1                | 60.2                 |
| Integrated (Proposed) | 9.8                  | 4.6                 | 81.9                 |

## 3.5 Quality Assurance and validation

- The cross-verified ground-truth images and past incident logs were compared with satellite data.
- Internal consistency piloting (Cronbachs alpha=0.87) was done on survey tools.
- The results of design sprint were evaluated with the help of Likert-scale feedback forms and thematic analysis of notes made by participants.

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

• Validity of the policy models was maintained by taking the opinion of experts and by measuring it against the previous event records.

#### 3.6 Consideration Ethics

Written informed consent was received by participants of the workshops and surveys. Stored no information that personally identifies a person. Policy simulations relied upon open access data and did not use any confidential government data.

#### IV. RESULT AND ANALYSIS

## 4.1 Urban stress distribution and geospatial insights

The geospatial analysis in the three cities indicated the apparent spatial vulnerability inequalities. Zones surrounding riverbeds and informal settlements recorded the highest Urban Stress Scores (USS) in Pune and are prone to flooding during the monsoons and to an overload of its infrastructure. Conversely, the relatively lesser USS values were found in central districts in Singapore and Amsterdam since these areas have strong public services, warning systems to the early-warning and well-established transport connections. NDVI and LST remote sensing indices showed a consistent vegetation loss and temperature surges in communities with a high population density, which once again proves the high-density neighborhoods to be susceptible to climate-inspired stress. Urban hotspots across all three cities matched up well with legacy planning gaps at the urban location characterized by low drainage, poor access to mass transit, or high rates of impervious surfaces coverage. Moderate stress in the form of densification pressures was observed in the southern belt of Amsterdam, whereas the industrial areas in Singapore were facing thermal stress patterns. The peri-urban wards of Pune had the most comprehensive combined stress brought forward by informal housing growth, congestion, and lack of digital infrastructure.

Table 3: Urban Stress Score (USS) by City Zone

| City      | High Stress Zone   | USS Score (0–1) | Key Stressors                      |
|-----------|--------------------|-----------------|------------------------------------|
| Amsterdam | Nieuw-West         | 0.78            | Heat stress, housing shortage      |
| Singapore | Jurong Industrial  | 0.82            | Heat islands, mobility bottlenecks |
| Pune      | Sinhagad Road Area | 0.91            | Flood risk, traffic, service gaps  |

## 4.2 Community preferences and Design Thinking Results

It resulted in numerous user-centered prototypes that could increase resilience, which was produced as part of the design sprint workshops. The flood defense was modular and co-created in Amsterdam where smart sensors were installed in a flood barrier and connected to provide real-time warning information. The workshop in Singapore came up with an idea of adaptive cooling zones- urban areas that could be outfitted with misting systems and have tree cover that is mapped out using AI-heat models. In Pune, respondents suggested a mobile application that incorporated the local warning mechanisms with the opportunity to inform low-income communities about the emergencies, transportation changes, and places where food is distributed. The survey using feedback forms showed that most folks in the community would support solutions that focused on co-ownership, low-tech friendliness, and local use. Experts found that people favoured analog-digital hybrids, e.g. visual alert boards connected to IoT sensors, to pure app-based infrastructure, particularly in regions where smartphone uptake is low. In every city, social equity and design continuity-based solutions were rated higher than their tech-heavy counterparts.

**Table 2: Community Preference Ratings for Design Prototypes** 

| Prototype                          | Avg. Rating (out of 5) | Key Strength                        |
|------------------------------------|------------------------|-------------------------------------|
| Smart flood barrier (Amsterdam)    | 4.3                    | Modularity, visual communication    |
| Adaptive cooling zones (Singapore) | 4.5                    | Comfort, environmental integration  |
| Emergency alert mobile app (Pune)  | 4.7                    | Accessibility, multilingual support |

# 4.3 Policy scenario simulation

The results of the simulations performed in the three cities revealed that the mean resilience indicators improved actively when the composite model (data science + design thinking + policy innovation) was used. In the case of business-as-usual, while the response time of the urban shock like flood or heatwave was high, citizen satisfaction was average. There were also some improvements in results when single domain (data science or design thinking) was used but results were limited and narrow in terms of system-wide effectiveness. The integrated tripartite model performed better than any other scenario. It also registered quick recovery periods, short delays in delivery of services, and record citizen approval levels. As an illustration, a simulated heatwave in Singapore would allow using predictive alerts in conjunction to integrated adaptive infrastructure and simplified policy procedures that would allow quickening the response time by almost half a time.



Figure 1: IOT and Smart City [25]

#### 4.4 Cross-city Comparative Insights

It was found that technological infrastructure is just as important, but it works effectively only when used in the context of participatory and adaptive systems. Although Singapore had advantages of centralized policy implementation and high-tech infrastructure, it did not have such community-based feedback loops as in the case of Amsterdam. Notwithstanding the limited resources, Pune was a demonstration of high innovation, with the community designing and mobilizing at the grass-root level, and bottom up planning as a significant contributor to innovation. It was not the technological development that proved the success of resilience strategies but the capacity of institutions to be open to incorporate the needs of the citizens and the real-time information into the governance structure. Areas that had incorporated all of these three pillars best always had lower vulnerability and rapid recovery of the system in the wake of shocks.



Figure 2: Urban Resilience [24]

#### V. CONCLUSION

This paper has shown how data science, design thinking, and policy innovation can be combined with the aim of improving urban resilience in the emerging smart city environment. Through integration, the study introduced a comprehensive picture that was capable of tackling the various complexities engulfing modern cities today-including those that threaten to damage cities as diverse as stress and harsh weather due to changes in climate, infrastructural weak points and social injustices. As the findings of the perspectives in Amsterdam, Singapore and

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

Pune confirmed, none of the approaches (technology, design or regulation) can effectively work without a combination. All three applied simultaneously led to measurable changes that positively affected the response times to the crisis, continuity of public services, as well as the satisfaction of the citizens in the cities that did so. In addition, participatory co-design process put emphasis on local, inclusive solutions to address problems and realities, based on the life experiences of various urban populations. The results of the geospatial analysis and the simulation analysis showed that resilient cities are the ones which not only gather data, but which implement the data by recurring community-based policy and infrastructure intervention measures. Smartness herein is not solely all about technology, rather the ability of the city to change, move, and participate its people in influencing the development of their surrounding. Such a threefold model will be easily scalable to new cities, which is highly replicable within future urban planning as it can be scaled to ensure that technology as an ability is supported by social equity and flexible governance options. This framework represents a solid roadmap to the development of cities that not only become smarter, but generate more sustainable and ultimately resilient under the conditions of global uncertainty, to the policymakers, urban technologists, and planners alike.

#### REFERENCES

- [1] C. Angelidou, "Smart city policies: A spatial approach," Cities, vol. 41, pp. S3–S11, 2014.
- [2] R. Hollands, "Will the real smart city please stand up?" City, vol. 12, no. 3, pp. 303–320, 2008.
- [3] J. C. Thinyane, L. Terzimehic, and M. Marjanovic, "Smart city technologies for sustainable development," Sustainable Cities and Society, vol. 45, pp. 611–622, 2019.
- [4] E. Glaeser and D. Cutler, "Cities, resilience, and health data systems," Urban Studies, vol. 58, no. 3, pp. 412–429, 2021.
- [5] S. Khan, M. Qamar, and N. Saeed, "AI-based flood risk forecasting for urban areas," Natural Hazards, vol. 108, pp. 2049–2068, 2021.
- [6] A. Mehmood, "Of resilient places: Planning for urban resilience," European Planning Studies, vol. 24, no. 2, pp. 407–419, 2016.
- [7] F. Cugurullo, "Urban artificial intelligence: From automation to autonomy in the smart city," Frontiers in Sustainable Cities, vol. 2, pp. 1–9, 2020.
- [8] T. Brown and J. Wyatt, "Design thinking for social innovation," Stanford Social Innovation Review, vol. 8, no. 1, pp. 30–35, 2010.
- [9] E. Manzini, Design, When Everybody Designs: An Introduction to Design for Social Innovation, MIT Press, 2015.
- [10] The Rockefeller Foundation, "100 Resilient Cities Initiative," 2017. [Online]. Available: https://www.rockefellerfoundation.org
- [11] M. Araos, J. Ford, L. Berrang-Ford, S. Austin, H. Biesbroek, and K. Lesnikowski, "Climate change adaptation planning in large cities," Global Environmental Change, vol. 38, pp. 131–142, 2016.
- [12] GovTech Singapore, "Smart Nation Initiatives," 2023. [Online]. Available: https://www.smartnation.gov.sg
- [13] T. Watson, "How Rio's smart city dream turned into a nightmare," The Guardian, 2016.
- [14] M. Batty, "Digital twins and smart cities," Environment and Planning B: Urban Analytics and City Science, vol. 45, no. 3, pp. 385–389, 2018.
- [15] H. Etzkowitz and L. Leydesdorff, "The dynamics of innovation: From National Systems and 'Mode 2' to a Triple Helix of university-industry-government relations," Research Policy, vol. 29, no. 2, pp. 109–123, 2000.
- [16] K. S. Perera, R. Fernando, and A. Wijesundara, "Smart City Resilience: A Systematic Literature Review," Sustainable Cities and Society, vol. 76, p. 103222, 2022.
- [17] P. Neirotti, A. De Marco, A. Cagliano, G. Mangano, and F. Scorrano, "Current trends in Smart City initiatives: Some stylised facts," Cities, vol. 38, pp. 25–36, 2014.
- [18] N. Komninos, "The architecture of intelligent cities: Integrating human, collective, and artificial intelligence," Urban Technology, vol. 18, no. 3, pp. 229–247, 2011.

ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-444

- [19] J. Chourabi, T. Nam, S. Walker, J. Gil-Garcia, S. Mellouli, K. Nahon, T. Pardo, and H. Scholl, "Understanding smart cities: An integrative framework," Proc. HICSS, 2012, pp. 2289–2297.
- [20] A. B. Sharifi and Y. Yamagata, "Urban resilience assessment: A review of existing methodologies," Urban Research & Practice, vol. 9, no. 1, pp. 114–129, 2016.
- [21] T. W. Brown, Change by Design: How Design Thinking Creates New Alternatives, Harvard Business Press, 2019.
- [22] J. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World, McGraw-Hill, 2000.
- [23] B. Walker and D. Salt, Resilience Thinking: Sustaining Ecosystems and People in a Changing World, Island Press, 2006.
- [24] D. T. Ng, J. G. Wu, and L. Zhao, "Urban resilience through digital twin modeling and citizen-centric design," Cities, vol. 136, p. 104258, 2023.
- [25] A. Ramaswami, A. Russell, P. Shivakumar, and A. Delgado, "Smart cities and inclusive sustainability: Bridging the urban data divide," Nature Sustainability, vol. 6, pp. 112–121, 2023.